APT: Action localization proposals from dense trajectories
نویسندگان
چکیده
This paper is on action localization in video with the aid of spatio-temporal proposals. To alleviate the computational expensive segmentation step of existing proposals, we propose bypassing the segmentations completely by generating proposals directly from the dense trajectories used to represent videos during classification. Our Action localization Proposals from dense Trajectories (APT) use an efficient proposal generation algorithm to handle the high number of trajectories in a video. Our spatio-temporal proposals are faster than current methods and outperform the localization and classification accuracy of current proposals on the UCF Sports, UCF 101, and MSR-II video datasets.
منابع مشابه
Action Detection with Improved Dense Trajectories and Sliding Window
In this paper we describe an action/interaction detection system based on improved dense trajectories [20], multiple visual descriptors and bag-of-features representation. Given that the actions/interactions are not mutual exclusive, we train a binary classifier for every predefined action/interaction. We rely on a non-overlapped temporal sliding window to enable the temporal localization. We h...
متن کاملCombined Ordered and Improved Trajectories for Large Scale Human Action Recognition
Recently, a video representation based on dense trajectories has been shown to outperform other human action recognition methods on several benchmark datasets. The trajectories capture the motion characteristics of different objects, for example human bodies, in spatial and temporal dimensions. In dense trajectories, points are sampled at uniform intervals in space and time and then tracked usi...
متن کاملWhat if we do not have multiple videos of the same action? — Video Action Localization Using Web Images
This paper tackles the problem of spatio-temporal action localization in a video, without assuming the availability of multiple videos or any prior annotations. Action is localized by employing images downloaded from internet using action name. Given web images, we first dampen image noise using random walk and evade distracting backgrounds within images using image action proposals. Then, give...
متن کاملAccurate Object Detection with Location Relaxation and Regionlets Re-localization
Standard sliding window based object detection requires dense classifier evaluation on densely sampled locations in scale space in order to achieve an accurate localization. To avoid such dense evaluation, selective search based algorithms only evaluate the classifier on a small subset of object proposals. Notwithstanding the demonstrated success, object proposals do not guarantee perfect overl...
متن کاملUnderstanding and localizing activities from correspondences of clustered trajectories
We present an approach for human activity recognition based on trajectory grouping. Our representation allows to perform partial matching between videos obtaining a robust similarity measure. This approach is extremely useful in sport videos where multiple entities are involved in the activities. Many existing works perform person detection, tracking and often require camera calibration in orde...
متن کامل